If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2-7q-15=0
a = 2; b = -7; c = -15;
Δ = b2-4ac
Δ = -72-4·2·(-15)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-13}{2*2}=\frac{-6}{4} =-1+1/2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+13}{2*2}=\frac{20}{4} =5 $
| 4(2x+3x+2)=-4x+124 | | 8x/3=5 | | 4n+46=10 | | (1/x+9)=(9/3x-5) | | 6x×5=6 | | -5n-17=-42 | | X+x+x=74 | | 7(.4y-0.1)=5-2y+0.86 | | -6000=3(2000)+b | | 5x+7x-80=40-8x | | 2x+16=x=14 | | 189=7(9+n) | | 4*f=2 | | 1/3(n)=3 | | 6h−9−3h=6−3h+2 | | 189=7*9+n | | 40-4x=30 | | (X+2)³-(x-1)³=x(3x+4)+8 | | -2x+10+3x=2+x+8 | | 2−1/2n=3n+16 | | (1/6)^2m=36 | | (1/6)^2m=4 | | 2/4x+1=5/3x-4 | | 10x+40=-18 | | 10y-2(2y+4)=-20 | | 2x-3x-1=-2 | | 2(x-4)=6+8 | | b=5(1+3)^10 | | 2w+3=41 | | |x-3|=11 | | 5x+40=9x | | 18=-28a |